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SUMMARY

The geometric mean of two matrices is considered from a computational viewpoint. Several numerical
algorithms based on different properties and representations of the geometric mean are discussed and
analyzed. It is shown that most of the algorithms can be classified in terms of the rational approximations of
the inverse square root function. A review of relevant applications is given. Copyright c© 2010 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

A typical wish in mathematics is to generalize concepts as much as possible. It is then understood
why researchers have tried to generalize the concept of geometric mean to the matrix generalizations
of positive numbers, namely Hermitian positive definite matrices. We denote by Pn the set of n× n
Hermitian positive definite matrices, which we will call just positive matrices. The geometric mean
of two matrices need to be a function ϕ : Pn × Pn → Pn.

The generalization is not trivial, since the formula
√
ab, for two positive numbers a and b, when

applied to matrices leads to (AB)1/2, which is unsatisfactory since it may be non-Hermitian for
certain A,B ∈ Pn. A different, more fruitful, approach to get a fair generalization is axiomatic, that
is derive the definition of geometric mean from the properties it ought to satisfy.

A natural property is the following: given a diagonal matrix D = diag(d1, . . . , dn), with
di > 0, and the identity matrix I , the geometric mean is ϕ(D, I) := diag(

√
d1, . . . ,

√
dn). The

aforementioned property is referred to as consistency with scalars.
The consistency with scalars is not sufficient to uniquely define a geometric mean. We need

another property, namely the invariance under congruence: let A,B ∈ Pn and S belonging to the
set GL(n) of invertible matrices of size n, then ϕ(S∗AS, S∗BS) = S∗ϕ(A,B)S. The invariance
under congruence is mathematically appealing since it states that the geometric mean interplay well
with the action of GL(n) over Pn, that is the congruence.

We recall a minor variation of a result that can be found in [10, Sec. 4.1].

Theorem 1
Let ϕ : Pn × Pn → Pn be a function which verifies both consistency with scalars and invariance
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2 B. IANNAZZO

under congruence, then

ϕ(A,B) = A1/2(A−1/2BA−1/2)1/2A1/2 =: A#B. (1)

The symbol A1/2 stands for the principal square root of the matrix A, which is a matrix satisfying
the equation X2 = A, and whose eigenvalues have positive real part. Such a matrix exists and is
unique if A has no nonpositive real eigenvalues, in particular if A is positive then A1/2 is positive.
Moreover, for any invertible matrix M , we have M−1A1/2M = (M−1AM)1/2.

Using the properties of the principal square root one can derive

A#B = A(A−1B)1/2 = (BA−1)1/2A = B(B−1A)1/2 = (AB−1)1/2B. (2)

It can be proved, moreover, that A#B verifies several other properties required by a geometric
mean, for instance: A#B = B#A; A−1#B−1 = (A#B)−1; for any α > 0, we have (αA)#B =√
α(A#B); if A and B commute, then A#B = (AB)1/2; we have det(A#B) =

√
det(A) det(B).

Another list of good properties is obtained using the Loewner partial order on Hermitian matrices,
for which A � B, for Hermitian A and B, when A−B is positive semidefinite. For instance, if A
and B are positive definite then

A � A#B � B when A � B (3)

and thus the geometric mean lies “between” as the term “mean” suggests. Moreover, the function
A#B turns out to be monotone with respect to its matrix arguments, namely if Â � A and B̂ � B,
then Â#B̂ � A#B.

For a comprehensive list of properties with proofs and an historical account, we refer the reader
to Chapter 4 of the book [10, Sec. 4] by Bhatia.

Another hint, if needed, on the goodness on the generalization of the geometric mean, based
on the definition (1), is given by the fact that it generalizes the following property: let a and b be
two positive real numbers, their geometric mean

√
ab can be obtained as the limit of the sequences

ak+1 = (ak + bk)/2, bk+1 = 2akbk/(ak + bk) with a0 = a and b0 = b. The updated values ak+1 and
bk+1 are the arithmetic and the harmonic mean, respectively, of ak and bk.

This “averaging technique” can be applied also to matrices leading to the coupled iterations
A0 = A, B0 = B,
Ak+1 = (Ak +Bk)/2,
Bk+1 = 2Ak(Ak +Bk)−1Bk = 2(A−1

k +B−1
k )−1,

k = 0, 1, 2, . . . , (4)

where Ak and Bk, for k = 1, 2, . . ., both converge to A#B. Observe that Ak+1 is the arithmetic
mean of Ak and Bk, while Bk+1 is the harmonic mean of Ak and Bk, both of which are positive
definite matrices when Ak and Bk are. This property has been noted by Anderson and Trapp [3] and
by Kubo and Ando [33].

An interesting, recent characterization of the geometric mean is given in terms of a special
Riemannian geometry of Pn. The geometry is obtained by the scalar product 〈X,Y 〉A =
trace(A−1XA−1Y ) on the tangent space TAPn at a positive matrix A (which can be identified
with the set of Hermitian matrices). In the resulting Riemannian manifold there exists only one
geodesic, γ : [0, 1]→ Pn, joining any two positive definite matrices A and B and whose natural
parametrization is known to be [10, Thm. 6.1.6] (see also [34])

A#tB := γ(t) = A(A−1B)t = A1/2(A−1/2BA−1/2)tA1/2. (5)

It is now apparent that A#B = A#1/2B is the mid-point of the geodesic joining A and B. The
value A#tB, for t ∈ (0, 1) is sometimes referred to as the weighted geometric mean.

The geometric mean of two matrices has several relevant applications, some of which are
reviewed in Section 6.

It could be argued that requiring invariance under congruence is too much and, in order to
give a physical meaning to the geometric mean, it might be sufficient to require invariance under
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THE GEOMETRIC MEAN OF TWO MATRICES FROM A COMPUTATIONAL VIEWPOINT 3

unitary congruence. Relaxing this assumption, different definitions of geometric mean arise, such
as exp( 1

2 (log(A) + log(B))) or the spectral mean of Fiedler and Pták [19]. Both definitions enjoy
some of the aforementioned properties of A#B; nevertheless, they do not verify others, for instance
(3) and thus, in our opinion, they cannot be considered good generalizations of the scalar geometric
mean to matrices.

The contributions of the paper are of different kind. First of all, we derive a simple formula for
A#B in terms of the polar decomposition. Then, we survey on algorithms for the geometric mean
and related quantities such as A#tB, discovering unexpected connections.

As far as we know, the methods considered in the literature are the averaging technique of
Anderson and Trapp [3] (see also [33]), a method based on the matrix sign function of Higham
et al. [24], the palindromic cyclic reduction of Iannazzo and Meini [29] and a method based on a
continued fraction expansion of Raı̈ssouli and Leazizi [43]. We show that the sign method and the
palindromic cyclic reduction are two variants of the averaging technique.

We present some further algorithms for computing the matrix geometric mean, based on suitable
modifications of known techniques: the first one is based on the Cholesky factorization and the
Schur (spectral) decomposition; the second is based on the expression of A#B in terms of
the polar decomposition of certain matrices; the third is a Gaussian quadrature applied to an
integral representation of the geometric mean; while the fourth is based on the rational minimax
approximation to the inverse square root which is obtained as a direct application the algorithm of
Higham, Hale and Trefethen [21].

A perhaps surprising property is that the polar decomposition algorithm and the Gaussian
quadrature, in their basic definition, produce one of the sequences of the averaging technique.
Moreover, they can be described in terms of certain Padé approximations of the inverse square
root as the argument approaches to 1.

The organization of the paper is as follows. In the next section we give a formula for the the
geometric mean which will be useful later. In Section 3 we discuss the Cholesky-Schur algorithm
which can be applied also to compute A#tB. In Section 4 we discuss the algorithms related to
the Padé approximation of z−1/2 while in Section 5 we discuss the one related to its rational
minimax approximation. In Section 6 we review some applications where a matrix geometric
mean is required. In Section 7 we perform some numerical tests, while in Section 8 we draw the
conclusions.

Now, we recall some concepts and facts that will be used in the paper. Any nonsingular matrix
M can be written as HU where H is Hermitian and U is unitary; the latter is called the polar factor
of M , which we denote by polar(M), and has explicit expression U = M(M∗M)−1/2. Finally, lef
f(A) be a matrix function, then for any invertible matrix M , we have

f(MAM−1) = Mf(A)M−1; (6)

we call this property similarity invariance of matrix functions. Beside similarity invariance, we use
several other properties of general and specific matrix functions, for this topic we address the reader
to the book [22] by Higham.

2. A PROPERTY OF THE GEOMETRIC MEAN

Any positive matrix A can be written as A = C∗C for an invertible C. Two noticeable examples are
A = A1/2A1/2 and the Cholesky factorization A = R∗R, where R is upper triangular with positive
diagonal entries.

Given two positive matrices A and B, with factorizations A = C∗C and B = D∗D, the matrix
geometric mean of A and B can be characterized using the following result which generalizes
Proposition 4.1.8 of [10] (compare [19, Thm. 2.1]).

Proposition 2
Let A = C∗C and B = D∗D with C,D ∈ Cn×n nonsingular. Then

A#B = C∗ polar(CD−1)D, (7)
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4 B. IANNAZZO

where polar(CD−1) is the unitary polar factor of CD−1. Moreover, let U be a unitary matrix such
that C∗UD > 0, then C∗UD = A#B and U = polar(CD−1).

Proof
Using the formula polar(M) = M(M−1M−∗)1/2 and the similarity invariance of the square root
(6) we get

C∗ polar(CD−1)D = C∗CD−1(DC−1C−∗D∗)1/2D

= A(D−1DA−1D∗D)1/2 = A(A−1B)1/2 = A#B.

The second statement can be obtained suitably modifying the proof of Proposition 4.1.8 of [10].

The novelty of Proposition 2 with respect to Proposition 4.1.8 of [10] is the identification of the
matrix U as a polar factor, namely formula (7). This will be crucial to design an efficient numerical
algorithm for computing A#B.

3. AN ALGORITHM BASED ON THE SCHUR DECOMPOSITION

We explain how to efficiently compute a point of the geodesicA#tB (or, that is the same, computing
the weighted geometric mean of A and B) using the Schur decomposition and the Cholesky
factorization. The resulting algorithm can be used to compute the matrix geometric mean for
t = 1/2. This kind of procedure is quite common in numerical linear algebra (compare [22, Problem
2.7]).

Consider the Cholesky factorizations A = R∗ARA and B = R∗BRB . Using the similarity
invariance of matrix functions we get

A#tB = A(A−1B)t = R∗ARA(R−1
A R−∗A BR−1

A RA)t = R∗A(R−∗A BR−1
A )tRA, (8)

and thus, the evaluation of A#tB can be obtained by forming the Cholesky decomposition of A,
inverting the Cholesky factor RA (whose condition number is the square root of the one of A) and
computing the t-th power of the positive definite matrix V = R−∗A BR−1

A . This is done by computing
the Schur form V = UDU∗ (that is, the spectral decomposition of V ) and getting

A#tB = R∗AUD
tU∗RA, R−∗A BR−1

A = UDU∗, (9)

The power of D is obtained computing the scalar power of its diagonal elements.
If the condition number of A is greater than the one of B, it may be convenient to interchange A

and B in order to get a possibly more accurate result. Using the simple equality A#tB = B#1−tA,
the formula to be used is

A#tB = B#1−tA = R∗BUD
1−tU∗RB , R−∗B AR−1

B = UDU∗. (10)

We synthesize the procedure.

Algorithm 3.1 (Cholesky-Schur method) Given A and B positive definite matrices, t ∈ (0, 1),
compute A#tB.

1. if the condition number of A is greater than the condition number of B then interchange A
and B, and then compute A#1−tB;

2. compute the Cholesky factorizations A = R∗ARA, B = R∗BRB and form V = R−∗A BR−1
A =

X∗X where X is the upper triangular matrix solving XRB = RA;
3. compute the Schur decomposition UDU∗ = V ;
4. compute A#tB = R∗BUD

tU∗RB .
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THE GEOMETRIC MEAN OF TWO MATRICES FROM A COMPUTATIONAL VIEWPOINT 5

The computational cost of the procedure is given by the Cholesky factorizations (2
3n

3 arithmetic
operations (ops)), the computation of V (n3 ops), the Schur decomposition (about 9n3 ops), the
computation of R∗BUD

tU∗RB (3n3 ops), for a total cost of about (14 + 2
3 )n3 ops.

Notice that all steps of Algorithm 3.1 can be performed in a stable way. Observe, moreover, that
the algorithm works for any t ∈ R.

4. ALGORITHMS BASED ON THE PADÉ APPROXIMATION OF z−1/2

We give three methods (with variants) for computing the matrix geometric mean, based on matrix
iterations or a quadrature formula. The algorithms are derived using different properties of the
matrix geometric mean, however, perhaps surprisingly, they give essentially the same sequences
which can be also derived using certain Padé approximation of z−1/2 in the formula A(B−1A)−1/2.

The first method is well-known and it is based on the simple property, recalled in Section 1,
that iterating two means one obtains a new mean: the geometric mean is obtained as the limit of
an iterated arithmetic-harmonic mean. The second method is based on the polar decomposition,
which benefits from the possibility to perform the computation in a numerically stable way [32, 41].
The latter is based on an integral representation of the matrix geometric mean computed with a
Gauss-Chebyshev quadrature, that method could be useful if one is interested in the computation of
(A#B)v, for A and B large and sparse.

4.1. Scaled averaging iteration

The averaging iteration
A0 = A, B0 = B,
Ak+1 = (Ak +Bk)/2,
Bk+1 = 2Ak(Ak +Bk)−1Bk = 2(A−1

k +B−1
k )−1,

k = 0, 1, 2, . . . , (11)

is, as far as we know, the first algorithm to efficiently compute A#B [3].
The sequences Ak and Bk are related by the simple formulae Ak = AB−1

k B = BB−1
k A (or

equivalently Bk = AA−1
k B = BA−1

k A), which are trivial for k = 0 and, assuming them true for
k, then, the equality B−1

k+1 = (A−1
k +B−1

k )/2 yields

Ak+1 =
1

2
(Ak +Bk) =

1

2
(AB−1

k B +AA−1
k B) = AB−1

k+1B,

=
1

2
(BB−1

k A+BA−1
k A) = BB−1

k+1A,

(12)

hence, the formulae are proved by an induction argument. Notice that Ak#Bk = A#B.
Using the previous relationships, iteration (11) can be uncoupled obtaining the single iterations

A0 = A (or B), Ak+1 =
1

2
(Ak +AA−1

k B), k = 0, 1, 2, . . . , (13)

and
B0 = A (or B), Bk+1 = 2(B−1

k +B−1BkA
−1)−1, k = 0, 1, 2, . . . , (14)

each of which converges to A#B.
Iteration (13) and (14) have the same computational cost as (11), and seem to be more attractive

from a computational point of view since they require less storage. However, iterations (13) and
(14) are prone to numerical instability.

Yet another elegant way to write the averaging iteration is obtained observing that

Bk+1 = 2Ak(Ak +Bk)−1(Ak +Bk −Ak) = 2Ak − 2Ak(Ak +Bk)−1Ak = 2Ak −AkA−1
k+1Ak,
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6 B. IANNAZZO

which yields the three-terms recurrence
A0 = A, A1 =

1

2
(A+B),

Ak+2 =
1

2
(Ak+1 + 2Ak −AkA−1

k+1Ak),
k = 0, 1, 2, . . . (15)

Essentially, the same algorithm is obtained applying Newton’s method for computing the sign of
a matrix in the following equality proved by Higham et al. [24]:

sign(C) =

[
0 A#B

(A#B)−1 0

]
, C :=

[
0 B

A−1 0

]
. (16)

The sign of a matrix M having nonimaginary eigenvalues can be defined as the limit of the iteration
Mk+1 = (Mk +M−1

k )/2 with M0 = M . Applying the latter iteration to the matrix C of (16) yields
a sequence Ck =

[
0 Xk

Yk 0

]
and the coupled iterations

X0 = A, Y0 = B−1,

Xk+1 =
1

2
(Xk + Y −1

k ),

Yk+1 =
1

2
(Yk +X−1

k ),

k = 1, 2, . . . (17)

where Xk converges to A#B and Yk converges to (A#B)−1.
We prove by induction that the sequences (11) and (17) are such that Xk = Ak, Yk = B−1

k , for
k = 0, 1, 2, . . . In fact X0 = A = A0, Y0 = B−1 = B−1

0 , while Xk+1 = (Xk + Y −1
k )/2 = (Ak +

Bk)/2 = Ak+1 and Yk+1 = (Yk +X−1
k )/2 = (A−1

k +B−1
k )/2 = B−1

k+1.
Iteration (11), based on averaging can be implemented at the cost per step of three inversion

of positive matrices, that is 3n3 ops, while iteration (17) based on the sign function can be
implemented at a cost of 2n3 ops. Moreover, the scaling technique for the sign function allows
one to accelerate the convergence. Let M be a matrix such that the sign is well defined, from
sign(M) = sign(γM) for each γ > 0, one obtains the scaled sign iteration which is M0 = γ0M ,
Mk+1 = (γkMk + (γkMk)−1)/2, where γk is a suitable positive number which possibly reduces
the number of steps needed for the required accuracy. A common choice is the determinantal
scaling γk = |det(Mk)|−1/n [15], a quantity that can be computed in an inexpensive way during

the inversion of Mk. Another possibility is to use the spectral scaling γk =
√
ρ(M−1

k )/ρ(Mk) [31],
which is interesting in our case since the eigenvalues of C =

[
0 B

A−1 0

]
are all real and simple (in

fact C2 =
[
BA−1 0

0 A−1B

]
has only real positive simple eigenvalues) and in this case a theorem of

Barraud [8, 22] guarantees the convergence to the exact value of the sign in a number of steps equal
to the number of distinct eigenvalues of the matrix.

To get the proper values of the scaling parameters it is enough to observe that |det(Ck)| =
|det(Xk) det(Yk)| and thus for the determinantal scaling γk = |det(Xk) det(Yk)|−1/(2n), while
ρ(Ck) =

√
ρ(XkYk) and thus for the spectral scaling γk = 4

√
ρ((XkYk)−1)/ρ(XkYk).

A scaled sign iteration is thus obtained.

Algorithm 4.1a (Scaled averaging iteration: sign based) GivenA andB positive definite matrices.
The matrix A#B is the limit of the matrix iteration

X0 = A, Y0 = B−1,

γk = |det(Xk) det(Yk)|−1/(2n)
(

or γk = 4
√
ρ((XkYk)−1)/ρ(XkYk)

)
Xk+1 =

1

2
(γkXk + (γkYk)−1),

Yk+1 =
1

2
(γkYk + (γkXk)−1),

k = 0, 1, 2, . . .

(18)
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THE GEOMETRIC MEAN OF TWO MATRICES FROM A COMPUTATIONAL VIEWPOINT 7

Using the aforementioned connections between the sign iterates and the averaging algorithm the
scaling can be applied to the latter obtaining the following three-terms scaled algorithm.

Algorithm 4.1b (Scaled averaging iteration: three-terms) Given A and B positive definite
matrices. The matrix A#B is the limit of the matrix iteration

γk =

∣∣∣∣ det(Ak)2

det(A) det(B)

∣∣∣∣−1/(2n)

,

A0 = A, A1 =
1

2
(γ0A+B/γ0),

Ak+2 =
1

2
(γk+1Ak+1 + 2γkAk/γk+1 − γ2

k/γk+1AkA
−1
k+1Ak),

k = 0, 1, 2 . . . (19)

The same sequence is obtained considering the Palindromic Cyclic Reduction (PCR)
P0 = 1

4 (A−B), Q0 = 1
2 (A+B),

Pk+1 = −PkQ−1
k Pk,

Qk+1 = Qk − 2PkQ
−1
k Pk,

k = 0, 1, 2, . . . (20)

whose limits are limkQk = A#B and limk Pk = 0. This convergence result is based on the fact that
the matrix Laurent polynomial

L(z) =
1

4
(A−1 −B−1)z−1 +

1

2
(A−1 +B−1) +

1

4
(A−1 −B−1)z,

is invertible in an annulus containing the unit circle and the sequence Qk of the PCR converges
to the central coefficient of its inverse, namely A#B [30]. Since the PCR verifies the same three-
terms recurrence (19) as the averaging iteration (see [29]), one obtains that Qk = Ak+1 and thus
Pk = (Ak −Bk)/4.

The connection with PCR allows one to describe more precisely the quadratic convergence of the
averaging technique, using the results on the convergence of the PCR.

Corollary 3
Let A and B be positive definite matrices. The sequences Ak and Bk converge to A#B with
‖Ak −A#B‖ = O(γ2k

) and ‖Bk −A#B‖ = O(γ2k

), for any ρ < γ < 1 with

ρ = max
λ∈σ(BA−1)

∣∣∣√λ− 1√
λ+ 1

∣∣∣. (21)

Proof
From Theorem 5.9 of [13], we have lim supk→∞ ‖Qk −A#B‖ = ρ(X∗)

2, whereX∗ is the minimal
solution of the matrix equation

1

4
(A−1 −B−1)X2 +

1

2
(A−1 +B−1)X +

1

4
(A−1 −B−1) = 0,

which implies that ‖Qk −A#B‖ = O(ξ2k

) for any ρ2 < ξ < 1 with ρ := ρ(X∗).
On the other hand, we have the explicit formula X∗ = −N(I + (I −N2)1/2)−1 [30, Thm. 5],

with N = (A−1 +B−1)−1(A−1 −B−1) = (BA−1 + I)−1(BA−1 − I), thus

ρ(X∗) =
σ

1 +
√

1− σ2
, σ = max

λ∈σ(BA−1)

∣∣∣λ− 1

λ+ 1

∣∣∣, (22)

and by a simple manipulation we get ρ := ρ(X∗) = maxλ∈σ(BA−1) |
√
λ−1√
λ+1
|. The corollary is proved

observing that Ak = Qk−1, for k > 1.
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4.2. Padé approximants to z−1/2

We give another interpretation of the sequences obtained by the averaging technique in terms of
the Padé appoximants of the function z−1/2. To this end, we manipulate the sequence Ak of (11)
showing its connection with Newton’s method for the matrix square root and with the matrix sign
iteration.

Let S = A−1B and consider the (simplified) Newton method for the square root of S, namely

Â0 = I, Âk+1 =
1

2
(Âk + Â−1

k S). (23)

The sequence Âk converges to S1/2 for anyA andB, since the eigenvalues of S are real and positive
[22, Thm. 6.9]. We claim that Âk = A−1Ak, where Ak is one of the two sequences obtained by
the averaging iteration. To prove this fact, a simple induction is sufficient, in fact assuming that
Ak = AÂk, we have

AÂk+1 =
1

2
(AÂk +AÂ−1

k S) =
1

2
(Ak +AA−1

k AA−1B) = Ak+1,

in virtue of (13).
It is well known that Newton’s method for the square root of the matrix S (23) is related to the

matrix sign iteration

Zk+1 =
1

2
(Zk + Z−1

k ), Z0 = S−1/2,

through the equality Zk = S−1/2Âk [22], and thus we have that

Ak = AÂk = AS1/2Zk = (A#B)Zk. (24)

The latter relation allows one to relate the averaging iteration to the Padé approximants to the
function t−1/2 in a neighborhood of 1. We use the reciprocal Padé iteration functions defined in [20]
as

ϕ2m,2n+1(z) =
Qn,m(1− z2)

zPn,m(1− z2)
,

where Pn,m(ξ)/Qn,m(ξ) is the (n,m) Padé approximant to (1− ξ)−1/2 at the point 0, that is

Pn,m(ξ)

Qn,m(ξ)
− (1− ξ)−1/2 = O(ξm+n+1),

as ξ tends to 0 and Pn,m and Qn,m are polynomials of degree n and m, respectively.
We define the principal reciprocal Padé iteration for m = n+ 1 and m = n as g̃r(z) :=

g̃m+n+1(z) = ϕ2m,2n+1(z), for which we prove the following composition property.

Lemma 4
Let r, s be positive integers. If r is even then g̃rs(z) = g̃r(g̃s(z)), if r is odd then g̃rs(z) =

g̃r

(
1

g̃s(z))

)
.

Proof
The principal reciprocal Padé iterations are the reciprocal of the well-known principal Padé
iterations, namely

g̃k(z) =
1

gk(z)
=

(1 + z)k + (1− z)k

(1 + z)k − (1− z)k
(25)

where the latter equality follows from the explicit expression of gk(z) given in [22, Thm. 5.9].
Notice that if r is even, then gr(1/z) = gr(z), moreover, grs(z) = gr(gs(z)), in fact it is easy to
see that the principal Padé iterations are conjugated to the powers through the Cayley transform
C(z) = (1− z)/(1 + z), that is

gr(z) = C(C(z)r), (26)
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and thus
g̃r(g̃s(z)) =

1

gr
(

1
gs(z)

) =
1

gr(gs(z))
=

1

grs(z)
= g̃rs(z),

while if r is odd, then gr(1/z) = 1/gr(z) and we get g̃rs(z) = g̃r

(
1

g̃s(z))

)
.

We are ready to state the main result of the section where we use g̃2(z) = 1+z2

2z .

Theorem 5
Let Pk(z)/Qk(z) be the [2k−1, 2k−1 − 1] Padé approximant at 0 to the function (1− z)−1/2, with
k > 0, then Ak = AQk(I −A−1B)Pk(I −A−1B)−1.

Proof
Let Z0 = (A−1B)−1/2. We prove that Zk = g̃2k(Z0) = ϕ2k,2k−1(Z0), this is true for k = 1, in fact
Z1 = g̃2(Z0), while to prove the inductive step we use Lemma 4 so that g̃2k+1(Z0) = g̃2(g̃2k(Z0)) =
g̃2(Zk) = Zk+1.

Equation (25) gives g̃2k(z) = g̃2k(1/z) and then g̃2k(Z0) = g̃2k(Z−1
0 ) = ϕ2k,2k−1(Z−1

0 ). Thus, in
view of equation (24) and recalling that A#B = AZ−1

0 , we have

Ak = AZ−1
0 Zk =

= AZ−1
0 Z0Q2k−1,2k−1−1(I − Z−2

0 )P2k−1,2k−1−1(I − Z−2
0 )−1

= AQk(I −A−1B)Pk(I −A−1B)−1.

As a byproduct of the previous analysis we get that the Newton method for the scalar square root
is related to the Padé approximation of the square root function.

Corollary 6
Let z ∈ C \ (−∞, 0], and let

zk+1 =
1

2
(zk + zz−1

k ), z0 = z,

be the Newton iteration for the square root of z, then zk = p(z)
q(z) , where p(z)/q(z) is the [2k−1, 2k−1 −

1] Padé approximant at 1 of the square root function z1/2.

Remark 7
Raı̈ssouli and Leazizi propose in [43] an algorithm for the matrix geometric mean based on a matrix
version of the continuous fraction expansion for scalars a, b > 0,

√
ab =

[
a+ b

2
;
−(a−b2 )2

a+ b

]∞
k=1

.

The partial convergent tN =
[
a+b

2 ;
−( a−b

2 )2

a+b

]N
k=1

is proved to be

tN =
√
ab

(1 +
√
ab)2N+2 + (1−

√
ab)2N+2

(1 +
√
ab)2N+2 − (1−

√
ab)2N+2

,

thus from the expression for the Padé approximation in (25), and the characterization of the
averaging iteration in terms of the Padé approximation we get that Ak = t2k−2−1, for k > 2, where
Ak is one of the sequences obtained by the averaging iteration with A0 = a and B0 = b.

The same equivalence holds in the matrix case, so we get that the sequence tN converges
linearly to the matrix geometric mean with a cost similar to the averaging iteration which indeed
converges quadratically and moreover can be scaled. Thus, in our opinion the sequence tN is of
little computational interest.

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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10 B. IANNAZZO

4.3. Algorithm based on the polar decomposition

Let A = R∗ARA and B = R∗BRB be the Cholesky factorizations of A and B, respectively. Using
these factorization in formula (7) we obtain the following representations for the matrix geometric
mean

A#B = R∗A polar(RAR
−1
B )RB = R∗A polar(RBR

−1
A )∗RB

= R∗B polar(RAR
−1
B )∗RA = R∗B polar(RBR

−1
A )RA,

(27)

where we have used the symmetry of the matrix A#B and the commutativity of the matrix
geometric mean function.

From (27) we derive an algorithm for computing the matrix geometric mean, which can be also
seen as a variation of [26, Alg. 4.9] (see also [22, Alg. 6.22]).

Algorithm 4.2 (Polar decomposition) Given A and B positive definite matrices.

1. Compute the Cholesky factorizations A = R∗ARA and B = R∗BRB;
2. Compute the unitary polar factor U of RBR−1

A ;
3. Compute A#B = R∗BURA.

The polar factor of a matrix M can be computed forming its singular value decomposition, say
M = Q∗1ΣQ2; from which we get the polar factor of M as Q∗1Q2 [22, Ch. 8]. This procedure is
suitable for an accurate computation due to the good numerical property of the SVD algorithm, but
it is expensive with respect to a method based on matrix iterations.

A more viable way to compute the unitary polar factor of M is to use the scaled Newton method

Zk+1 =
1

2
(γkZk + (γkZk)−∗), Z0 = M, (28)

where γk > 0 can be chosen in order to reduce the number of steps needed for convergence.
A nice property of the scaled Newton method for the unitary polar factor of a matrix is that the

number of steps can be predicted in advance for a certain machine precision and the algorithm is
numerically stable if the inversion is performed in a mixed backward/forward way (see [32, 41]).
An alternative is to compute the polar decomposition using a scaled Halley iteration as in [41].

The better choice for the scaling factor in Newton’s iteration is the optimal scaling γk =
(σ1(Xk)σn(Xk))1/2, where σ1(Xk) and σn(Xk) are the extreme singular values of Xk. In practice,
cheaper approximations of the optimal scaling are available [22, Sec. 8.6], such as

γk =

(
‖Z−1

k ‖1‖Z
−1
k ‖∞

‖Zk‖1‖Zk‖∞

)1/4

. (29)

If γk = 1 for each k, then the sequence Zk obtained by iteration (28) with Z0 = RBR
−1
A is strictly

related to the sequence obtained by the averaging technique, in fact Zk = R−∗B AkR
−1
A , where Ak

is defined in (13) with A0 = B. This equality can be proved by an induction argument in fact
R−∗B A0R

−1
A = R−∗B R∗BRBR

−1
A = Z0 and if the equality is true for k, then

Zk+1 =
1

2
(Zk + Z−∗k ) = R−∗B

(
Ak
2

+R∗B
RBA

−1
k R∗A
2

RA

)
R−1
A

= R−∗B

(
Ak +BA−1

k A

2

)
R−1
A = R−∗B

(
Ak +AA−1

k B

2

)
R−1
A = R−∗B Ak+1R

−1
A .

Remark 8
Notice that for A = I , Algorithm 4.2 reduces to the algorithm of Higham [22, Alg. 6.21] for the
square root of a positive matrix B, and can be seen as a generalization of it. A side-result of the
previous discussion is that Higham’s algorithm can be seen as yet another variant of the Newton
method for the matrix square root.
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4.4. Gaussian quadrature

The definitionA#B = A(B−1A)−1/2 in terms of an inverse square root yields a rather large number
of integral representations [30] among which we note the following:

A#B =
1

π

∫ 1

0

(tB−1 + (1− t)A−1)−1√
t(1− t)

dt, (30)

obtained by Ando, Li and Mathias [4] using an Euler integral. The same representation can be
obtained from the Cauchy integral formula for the function z−1/2 [30].

An algorithm for the geometric mean of two matrices is obtained through the integral
representation (30). The change of variable z = t+1

2 yields

A#B =
2

π

∫ 1

−1

((1 + z)B−1 + (1− z)A−1)−1

√
1− z2

dz, (31)

which is well suited for Gaussian quadrature with respect to the weight function ω(z) = (1−
z2)−1/2, referred to as Gauss-Chebyshev quadrature since the orthogonal polynomials with respect
to the weight ω(z) are the Chebyshev polynomials (see [16] for more details). For an integral of the
form ∫ 1

−1

f(z)√
1− z2

dz,

where f is a suitable function, the formula with N nodes is

ΣN+1 =
π

N + 1

N∑
k=0

f(xk), xk = cos

(
(2k + 1)π

2(N + 1)

)
, k = 0, . . . , N.

Applying the Gauss-Chebyshev quadrature formula to (31) we obtain the following
approximation of A#B

TN+1(A,B) =
2

N + 1

N∑
k=0

((1 + xk)B−1 + (1− xk)A−1)−1

= B

(
2

N + 1

N∑
k=0

((1 + xk)A+ (1− xk)B)−1

)
A.

(32)

Algorithm 4.3 (Gauss-Chebyshev quadrature) Given A and B positive definite matrices. Choose
N and set

A#B ≈ TN (A,B).

where TN (A,B) is defined in (32).

The computation cost is the inversion of a positive matrix, that is n3 ops, for each node of the
quadrature and two matrix multiplication at the end. The number of nodes required to get a fixed
accuracy depends on the regularity of the function ψ(z) = ((1 + z)A+ (1− z)B)−1. The function
ψ(z) is rational and thus analytic in the complex plane except the values of z such that ψ(z) is
singular, which are the reciprocal of the nonzero eigenvalues of the matrix (B −A)(B +A)−1 =
(BA−1 − I)(BA−1 + I)−1.

We claim that all the poles are real and lie outside the interval [−1, 1], which is equivalent
to require that the eigenvalues of (BA−1 − I)(BA−1 + I)−1 lie in the interval (−1, 1). Define
C(z) = (z − 1)/(z + 1), then the image under C(z) of the positive real numbers is the interval
(−1, 1), then the eigenvalues of C(BA−1) lie in the interval (−1, 1) since BA−1 has positive
eigenvalues λ1, . . . , λn and the eigenvalues of C(BA−1) are C(λ1), . . . , C(λn) (compare [22, Thm.
1.13]).

Copyright c© 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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12 B. IANNAZZO

Standard results on the convergence of the Gauss-Chebyshev quadrature (see [16, Thm. 3]) imply
that the sequence TN (A,B) converges to A#B linearly, in particular for each ρ2 < ξ < 1, we have
‖TN (A,B)−A#B‖ = O(ξN ), where 1/ρ is the sum of the semiaxes of an ellipse with foci in 1
and −1 and whose internal part is fully contained in the region of analiticity of ψ(z).

Since the poles of ψ(z) are real and lie outside the interval (−1, 1), then the largest ellipse

is obtained for ρ = 1/( 1
σ +

√
1
σ2 − 1) = σ/(1 +

√
1− σ2), where σ = maxi{|C(λi)|} (notice

that 1/σ is the pole of ψ(z) nearest to [−1, 1]). A straightforward manipulation gives ρ =
maxi{|C(

√
λi)|}.

If m and M are the smallest and largest, respectively, eigenvalues of BA−1, then the convergence
of TN (A,B) is slow if m is small or M is large. By a suitable scaling of A, it is possible to have
mM = 1, which gives a faster convergence, however, when M/m tends to infinity the parameter of
linear convergence tends to 1, in this case a simple analysis shows that ρ = 1 +O

(
4
√

m
M

)
and thus

the parameter of linear convergence of TN (A,B) depends on m/M as a square root. In Section 5
another quadrature formula whose dependence on M/m is just logarithmic is considered.

A comparison of the parameters of linear convergence for the Gauss-Chebyshev formula
TN (A,B) and the parameters of quadratic convergence for the averaging iteration in Corollary 3
reveals that they are essentially the same. This is not a mere coincidence, in view of the following
result.

Theorem 9
Let Tk be the quadrature formula of (32) and Bk be the sequence obtained by the averaging
technique (11) then Bk = T2k−1 , for k = 1, 2, . . .

Proof
The equivalence follows from the formula for the term Qk of the PCR

Q−1
k =

1

2k

2k−1∑
j=0

(
Q0 + 2P0 cos

(2j + 1)π

2k+1

)−1

,

provided in [29, Eq. 28], and from the equivalence Q−1
k = A−1

k+1 = B−1Bk+1A
−1 (see Eq. (12)) for

Q0 = 1
2 (A+B) and P0 = 1

4 (A−B).

4.5. Generalization to the weighted geometric mean

In Section 3 we have shown that the Cholesky-Schur method is able to compute the weighted
geometric mean A#tB for t ∈ (0, 1). One might wonder how the methods presented in this section
can be generalized to the weighted case.

Unfortunately, the weighted case appears to be more complicated, and most of the algorithms of
this section, in the weighted case, become uncorrelated.

First, we consider the weighted version of the averaging iteration
A0 = A, B0 = B,
Ak+1 = tAk + (1− t)Bk,
Bk+1 = (tA−1

k + (1− t)B−1
k )−1,

k = 0, 1, 2, . . . ,

for t ∈ (0, 1). It can be proved that these two sequences yield a common limit, but it can be different
from A#tB. For instance, if A = 2 and B = 1, then the sequence Ak with t = 1/3 is easily shown
to be decreasing and we have A2 = 56

45 < 21/3 = A#tB so that limk Ak 6= A#tB.
Second, it is possible to derive a generalization of (31) for a generic t ∈ (0, 1), namely

A#tB =
2 sin(πt)

π

∫ 1

−1

(
(1 + z)B−1 + (1− z)A−1

)−1

(1− z)t(1 + z)1−t dz.

Using this integral representation, one could approximate the weighted mean using a Gaussian
quadrature with weight function ω(z) = (1− z)−t(1− z)t−1, whose poles are the zeros of certain
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Jacobi polynomials. The resulting method converges quite slowly and its practical usage is restricted
to large-scale problems, not considered here.

Third, the Newton method for the pth root can be considered when t = 1/p, using the
approximations of the pth root of A−1B to get a sequence of approximations to the weighted mean
A#1/pB = A(A−1B)1/p. For stability reasons, the sequence generated by Newton’s method for the
pth root of a matrix C ∈ Cn×n is obtained through the simplified Newton method in the form [27]

X0 = I, N0 = C,

Xk+1 = Xk

(
(p−1)I+Nk

p

)
,

Nk+1 =
(

(p−1)I+Nk

p

)−p
Nk.

(33)

We propose a variant of the simplified Newton method specifically tailored for the weighted
geometric mean, namely 

Y0 = A, M0 = A−1B,

Yk+1 = Yk

(
(p−1)I+Mk

p

)
,

Mk+1 =
(

(p−1)I+Mk

p

)−p
Mk.

(34)

We summarize the properties of Newton’s method for the weighted geometric mean in the following.

Theorem 10
Let A and B be positive definite, then the sequence {Yk}k generated by the simplified Newton
method (34) converges to A#1/pB.

Proof
The sequences {Xk}k and {Nk} of (33), with C = A−1B converge to (A−1B)1/p and I ,
respectively. This follows from the fact that, in the scalar case, the same algorithm, with C = λ,
where λ is any eigenvalue of A−1B, yields two sequences converging to λ1/p and 1, respectively
(see [27] for further details).

To prove the convergence of the sequence {Yk}k of (34) to A#tB it is enough to observe that
Yk = AXk and Mk = Nk for each k. This can be proved by an easy induction argument.

The simplified Newton method is an interesting alternative to the Cholesky-Schur method, for
t = 1/p, since the sequence Yk is made of positive definite matrices. Unfortunately, the matrices
Mk are not positive definite and thus the method does not fully exploit the structure. Moreover, it
is easy to see that the sequence obtained by Newton’s method is not related to the aforementioned
Gaussian quadrature method for p > 2.

Finally, an alternative to compute A#tB is to use directly one of the formulae

A#tB = A(A−1B)t = B(B−1A)1−t

= A exp(t log(A−1B)) = A exp(−t log(B−1A)).
(35)

The expressions in the first row of (35) can be evaluated either by using the spectral decomposition
of the matrix A−1B (or B−1A) which is nonnormal in the generic case or using an algorithm
for fractional powers of matrices [23, 28]. Alternatively, one could use the expressions in the
second row of (35) where the exponential and the logarithm can be computed as explained in
[22]. Unfortunately, none of these alternatives is of interest for this problem since they are more
expensive than the Cholesky-Schur algorithm and do not exploit the positive definite structure of A,
B and A#tB.

In summary, the best suited method for the weighted geometric mean of dense matrices seems
to be the Cholesky-Schur method, while for the case of large and sparse matrices, the quadrature
methods could have some interest. For t = 1/p, it would be interesting to get a variant of the Newton
method which works only with positive definite matrices, together with a scaling technique, which,
in this case, could become competitive with the Cholesky-Schur method.
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5. ALGORITHMS BASED ON THE RATIONAL MINIMAX APPROXIMATION OF z−1/2

In Section 4 we have found that many algorithms for computing the matrix geometric mean are
variations of the one obtained by using certain Padé approximations of z−1/2 in the formulaA#B =
A(B−1A)−1/2. To get something really different, one should change the rational approximation.
The natural direction is towards the (relative) rational minimax approximation.

Let Rk−1,k be the set of rational functions whose numerator and denominator have degree k − 1
and k, respectively. The function r̃k,γ(z) is said to be the rational relative minimax approximation
to z−1/2 in the interval [1, γ] if it minimizes over Rk−1,k the quantity

max
z∈[1,γ]

∣∣∣∣r(z)− z−1/2

z−1/2

∣∣∣∣ .
An explicit expression for r̃k,γ(z), in terms of elliptic function is known since the work of Zolotarev
in 1877 (see [18]).

The same approximation is obtained by Hale, Higham and Trefethen [21] by a trapezoidal
quadrature following a clever sequence of substitutions applied to the Cauchy integral formula for
A−1/2, namely,

A−1/2 =
1

2πi

∮
Γ

z−1/2(zI −A)−1dz,

where Γ is a contour enclosing the spectrum of A.
Since A#B = A(A−1B)1/2 = B(A−1B)−1/2, using the results of [21], we get immediately the

following approximation (obtained by a quadrature formula on N nodes on a suitable integral
representation of A#B)

SN (A,B) = B

−2K ′
√
m

πN

N∑
j=1

(ω(tj)
2A−B)−1cn(tj |γ)dn(tj |γ)

A (36)

which is proved to coincide with ArN,γ(B−1A) for γ = M/m, where M and m are the largest and
the smallest eigenvalues of A−1B, respectively.

The notation of (36) has the following meaning:

tj =
(
j − 1/2

)K ′
N

i, 1 6 j 6 N,

ω(tj) =
√
m sn(tj |γ), where sn(tj |γ), cn(tj |γ) and dn(tj |γ) are the Jacobi elliptic functions, while

K ′ is the complete elliptic integral of the second kind associated with
√
γ (see [1] for an introduction

to elliptic functions and integrals).
The convergence of SN (A,B) to A#B can be deduced from Theorem 4.1 of [21]. In particular,

‖A#B − SN (A,B)‖ = O(e−2π2N/(log(M/m)+3)).

Thus, the convergence of the sequence SN (A,B) to A#B is dominated by a sequence whose
convergence is linear with a rate which tends to 1 as M/m tends to ∞, but whose dependence on
M/m is just logarithmic. On the contrary, the rate of linear convergence of the Gauss-Chebyshev
sequence TN (A,B) of (32) depends linearly on M/m, and thus we expect that the formula
SN (A,B) requires less nodes than TN (A,B) to get the same accuracy on the approximation of
A#B at least for large values of M/m.

We describe the synthetic algorithm.

Algorithm 5.1 (Rational minimax) Given A and B positive definite matrices. Choose N and set

A#B ≈ SN ,

where SN is defined in (36).
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Figure 1. An electric circuit whose joint resistance is related to the matrix geometric mean

6. APPLICATIONS

We review some of the applications in which the geometric mean of two matrices is required, they
range from electrical network analysis [3] to medical imaging [6], from image deblurring [17], to
the computation of the geometric mean of several matrices [4, 14], with indirect applications to
radar [7] and elasticity [39].

6.1. Electrical networks

Fundamental elements of a circuit are the resistances which can be modeled by positive real
numbers. It is a customary high school argument that two consecutive resistances r1 and r2 in the
same line can be modeled by a unique joint resistance whose value is the sum r1 + r2, while if the
two resistances lie in two parallel lines their joint resistance is the “parallel sum” (r−1

1 + r−1
2 )−1.

More sophisticated devices based on resistances are n-port networks, which are “objects” with
2n ports at which current and voltage can be measured, without knowing what happens inside.
The usual way to model n-port networks is through positive definite matrices. In this way two
consecutive n-ports A and B can be modeled as the joint n-port A+B, while two parallel n-ports
give the joint n-port (A−1 +B−1)−1.

Complicated circuits, made of several n-ports can be reduced to a joint n-port using these sums
and parallel sums. Consider the circuit in Figure 1: it is an infinite network (which models a large
finite network).

Let Zk be the joint resistance of the subcircuit obtained selecting the first k loops, then it can be
shown that Z1 = B and

Zk+1 = (B−1 + (A+ Zk)−1)−1,

and the sequence has limit limk→∞ Zk = 1
2 (−A+ (A#(A+ 4B))). This limit is the joint resistance

of the infinite circuit. For further details see [2], from which the example is taken.
It is worth pointing out that the definition of geometric mean of two matrices first appeared in

connection with these kind of applications [42].

6.2. Diffusion tensor imaging

The technique of Nuclear Magnetic Resonance (NMR) in medicine produces images of some
internal parts of the body which are used by medics to give a diagnose of important pathologies
or to decide how to perform a surgery.

One of the quantities measured by the NMR is the diffusion tensor which is a 3× 3 positive matrix
describing the diffusion of the water in tissues like the white matter of the brain or the prostate. The
technique is called Diffusion Tensor Imaging (DTI) [35].

The diffusion tensor is measured for any of the points of an ideal grid into the tissue, thus one has
a certain number of positive matrices indexed by their positions.

A problem in DTI is the “interpolation” of tensors, that is, given two tensors, find one or more
tensors in the line joining them, the more adherent to the real data as possible. This is useful for
instance to increase the resolution of an image or to reconstruct some corrupted parts.

Many models have been given for the interpolation of tensors in DTI, the most obvious of
which is the linear interpolation, where k points between A and B are Pj = j

k+1A+ k+1−j
k+1 B, for
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Figure 2. Interpolation of tensors, displayed as ellipsoids, using the Riemannian geometry (upper line) and
the Euclidean geometry (lower line). One can observe the swelling effect in the second line, due to the large
determinant of the central tensors. The picture has been obtained using the program TenVis by R. Parcus

(https://github.com/quiuquio/TenVis).

j = 1, . . . , k. The linear interpolation finds point equally spaced on the line joining A and B in the
space of the matrices, that is, uses the Euclidean geometry of Cn×n.

One of the problems related to the use of the Euclidean geometry arises when A and B have
determinants of the same magnitude, while (A+B)/2 (or another point on the line joining A and
B) has a much larger determinant. In terms of diffusion tensors, this means that the anisotropy at the
mid-point is much larger than the anisotropy at two near points. This is called the swelling effect and
it is removed using the geometry given in Section 1 [9], for which we get the interpolation points

P ak = A#j/(k+1)B = A(A−1B)j/(k+1), j = 1, . . . , k.

A visualization of the swelling effect is depicted in Figure 2.
Using the log Euclidean geometry defined in [6], we get the interpolation points

P bk = exp

(
j

k + 1
log(A) +

k + 1− j
k + 1

log(B)

)
, j = 1, . . . , k.

The log Euclidean geometry has been introduced as an approximation to the Riemannian geometry
where quantities are easier to be computed. However, in the interpolation problem described here,
using the Cholesky-Schur algorithm of Section 3 to compute P ak (reusing the Schur factorization
of R−∗A BR−1

A for each j) is much less expensive than the computation of P bk using the customary
algorithms for the logarithm and the exponential of a Hermitian matrix.

6.3. Computing means of more than two matrices

The generalization of the geometric mean to more than two positive matrices is usually identified
with their Karcher mean in the geometry given in Section 1 (see [11] for a precise definition).

The Karcher mean of A1, . . . , Am can been obtained as the limit of the sequence Sk =
Sk−1#1/kA(k mod m)+1, with S1 = A1 as proved by Holbrook [25] and extended by Lim and Pálfia
[37]. The resulting sequence is very slow and cannot be used to design an efficient algorithm for the
computation of the Karcher mean, however it may be useful to construct an initial value for some
other iterative methods such as the Richardson-like iteration by Bini and Iannazzo [11]. Another
way to approximate the Karcher mean is through a sequence of power means, which are in turn
computed by a fixed-point iteration based on the weighed geometric mean of two matrices [36].

Other geometric-like means of more than two matrices are based on recursive definitions like the
mean proposed by Ando, Li and Mathias [4], which for three matrices A0, B0 and C0 is defined as
the common limit of the sequences

Ak+1 = Bk#Ck, Bk+1 = Ck#Ak, Ck+1 = Ak#Bk, k = 0, 1, 2, . . .
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These sequences converge linearly to their limit. Another similar definition which gives cubic
convergence (to a different limit) has been proposed in [14, 40], where we find the iteration

Ak+1 = Ak#2/3(Bk#Ck), Bk+1 = Bk#2/3(Ck#Ak), Ck+1 = Ck#2/3(Ak#Bk).

As one can see, the efficient computation of A#tB is a basic step to implement these kind of
iterations.

6.4. Image deblurring

A classical problem in image processing is the image deblurring which consists in finding a clear
image from a blurred one. In the classical models, the true and the blurred images are vectors and
the blurring is seen as a linear operator A, thus the problem is reduced to the linear system Af = g
which in practice is very large and ill-conditioned. A computationally easy case is the one in which
A is a band Toeplitz matrix, which corresponds to the so-called shift-invariant blurred operators.

Even if A is not shift-invariant, it can be possible, in certain cases, that a change of coordinates
M makes it shift-invariant, i.e. MTAM is band Toeplitz. If such a M exists and is known, then the
linear system Af = g has the same nice computational properties as a band Toeplitz system.

WhenA and T are positive definite, the matrixM = A−1#T is an explicit change of coordinates.
For further details see [17].

6.5. Norms of finite interpolation spaces

The material of this section is taken from [5] to which we address the reader for a full detailed
description with references.

Let Ω ⊆ Rn be open, bounded and with smooth boundary, and let H1
0 (Ω) be the Sobolev space

of differentiable functions on L2(Ω) with zero trace, while H0
0 (Ω) be the set of functions on L2(Ω)

with zero trace. Let {ϕ1, . . . , ϕn} be a set of linearly independent piecewise linear polynomials on
a suitable subdivision of Ω (arising, for instance, from a finite elements method), then the span in
H1

0 (resp. H0
0 ) of {ϕi}i=1,...,n, is an Hilbert subspace Xh (resp. Yh).

Define the matrices L0 and L1 such that

(L0)ij = 〈ϕi, ϕj〉L2(Ω), (L1)ij = 〈∇ϕi,∇ϕj〉L2(Ω).

The matrices L0 and L1 are positive definite since they are Grammians with respect to a scalar
product, in particular L0 is a discrete identity and L1 is a discrete Dirichlet Laplacian. A norm for
the interpolation space [Xh, Yh]ϑ is given by the energy norm of the matrix

L0(L−1
0 L1)1−ϑ = L0#1−ϑL1.

The most interesting case is ϑ = 1/2, where the norm is given by the geometric mean of L0 and L1.
This property holds in more generality. In fact, let X and Y be two n-dimensional Hilbert spaces

obtained endowing Rn with the scalar products 〈·, ·〉X and 〈·, ·〉Y , respectively. Choosing a basis or
Rn, there exist A and B positive definite such that 〈u, v〉X = uTAv and 〈u, v〉Y = uTBv, where u
and v are expressed in the given basis. Arioli and Loghin [5] have observed that the scalar product
uT (A#tB)v induces an interpolation norm on the space [X,Y ]t (see also [38]).

The same construction can be used to generate norm of interpolation spaces between finite
dimensional subspaces of generic Sobolev spaces with applications to preconditioners of the
Poincaré–Steklov operator or boundary preconditioners for the biharmonic operator.

The computational problems related to this applications are reduced to the computation of
(A#tB)v, where A and B are usually of large dimension and sparse and v is a vector.

7. NUMERICAL EXPERIMENTS

We present some numerical tests to illustrate the behaviour of the algorithms presented in the paper
in finite precision arithmetic. The tests have been performed using MATLAB on a computer with
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Pentium Dual-Core T4300 processor. The scripts of the tests are available at the author’s personal
web page. Regarding Algorithm 5.1, based on the rational minimax approximation, we have used
the code of [21]. The implementation of the best algorithms for the matrix geometric mean has been
added to the Matrix Means Toolbox [12].

As a measure of accuracy we consider the relative error ‖G̃−G‖/‖G‖, where G̃ is the computed
value of the geometric mean, while G is the exact solution obtained using the variable precision
arithmetic and rounded to double precision.

The matrices used in the tests are obtained either by the random function of the Matrix Means
Toolbox [12], which allows one to get positive definite matrices of any size, having norm one and
with prescribed condition number; or using the gallery function of MATLAB, from which we
have selected ten matrices which are positive definite.

Test 1
We compare the behaviour of the algorithms showing how the convergence of the iterative
algorithms and quadrature formulae depends on the eigenvalues of BA−1. In fact, for the averaging
iteration, the convergence depends on the value ρ of (21), while for the quadrature the linear
parameter of convergence depends on M/m, where M and m are the largest and the smallest
eigenvalues of BA−1 (after a proper scaling such that Mm = 1).

We consider for n = 10, the matrices A = αI + E ∈ Cn×n, where E is the matrix made of ones
and α > 0, and B = (bij) ∈ Cn×n such that bij = σ|i−j|, which is positive definite for 0 < |σ| < 1.
These two matrices, in the MATLAB gallery, are called Pei and KMS (Kac-Murdock-Szëgo),
respectively.

For α = 0.56 and σ = 1− 10−3, we have ρ ≈ 0.94, while for α = 0.56 and σ = 1− 10−6 we
have ρ ≈ 0.998. For these values of α and σ, we compute an approximation of A#B in double
precision using the different algorithms and monitor the relative error at each step for the iterations
and for an increasing number of nodes for quadrature rules. The results for the algorithms based
on iterations are drawn in Figure 3, where the algorithms considered are: the averaging algorithm
(avera), namely iteration (11); the sign iteration (sign), namely Algorithm 4.1a, the three-term
recurrence (tterm), namely Algorithm 4.1b, and the polar decomposition algorithm (polar),
namely Algorithm 4.2. For both sign iteration and three-term recurrence, the determinantal scaling
has been used, while the polar factor is computed by Newton’s method with the scaling parameter
(29).

As ρ becomes large, the number of steps needed by the averaging iteration without scaling
increases and so the scaling technique is recommended. The polar decomposition algorithm, in
this example shows a faster convergence. Nevertheless, using a spectral scaling for the sign
method would make it as fast as the polar decomposition, but with the further requirement of the
approximation of two spectral radii.

Test 2
We repeat Test 1 with α = 0.56 and σ = 1− 10−2 for which M/m ≈ 149 and with α = 0.56
and σ = 1− 10−3 for which M/m ≈ 103; where now we consider the quadrature methods. The
results are drawn in Figure 4, where we consider the Gauss-Chebyshev quadrature (gauss),
namely Algorithm 4.3, the same algorithm after a scaling on A and B such that Mm = 1 (gauss
scaled) and the rational minimax approximation algorithm (minimax), namely Algorithm 5.1.

All methods show linear convergence, but the one based on rational minimax is much more
effective, as soon as M/m increases. Unfortunately, while for the Gaussian quadrature it is possible
to double the number of nodes, re-using the computed values and deriving an automatic quadrature
algorithm; for the quadrature based on the rational minimax approximation it is not simple to predict
the exact number of nodes needed, moreover some complex arithmetic is needed.

Even if these algorithms are slower than the algorithms considered in Test 1, they are the only
algorithms presented in the paper which are suited for the problem (A#B)v, where A and B are of
large size and sparse and v is a vector. In fact, both give an expression of A#B of the type

A#B = γB

(
N∑
k=0

(αkA+ βkB)−1

)
A.
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Figure 3. Convergence behaviour of algorithms based on iterations for A = 0.56I + E, where E is the
matrix whose entries are all one, and B = (σ|i−j|)i,j with σ = 1− 10−3 (left figure) or σ = 1− 10−6

(right figure).

Figure 4. Convergence behaviour of algorithms based on quadrature formulae for A = 0.56I + E, where E
is the matrix whose entries are all one, andB = (σ|i−j|)i,j with σ = 1− 10−2 (left figure) or σ = 1− 10−3

(right figure).

with αk, βk > 0. The computation of (A#B)v is then reduced to matrix-vector multiplications and
solutions of linear systems of the type (αkA+ βkB)x = b, where the matrix coefficient is large,
sparse and positive definite.

As N increases, the approximation error in computing (A#B)v follows the same trend as the
approximation error in computing A#B in Figure 4.

Test 3
We test the accuracy of the algorithms considered in the paper. We compare the Cholesky-Schur
(sharp) algorithm 4.1 of Section 3; the polar decomposition algorithm 5.2 (polar) and the three
iteration obtained by the vanilla averaging iteration in (11) (avera) and its scaled variants, namely
the sign algorithm 5.1a (sign) and the three-terms recurrence algorithm 5.1b (tterm). We stop
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Figure 5. Accuracy obtained using different matrix mean algorithms with six random couples of 8× 8

matrices with condition number between 105 and 1013.

the iterations one step after the relative difference of two consecutive iterates becomes smaller than
10−10 or after a fixed number of steps.

We do not consider the algorithms based on quadrature since they require sometimes too many
steps and this spoils convergence.

We generate positive definite matrices with condition numbers between 105 and 1013 using the
random command in the Matrix Means Toolbox and compute the geometric mean of the couples.
The accuracy is measured by the relative error ‖G̃−G‖/‖G‖, where G̃ is the value obtained by
the algorithm, while G is the geometric mean correct up to the machine precision, obtained using
variable precision arithmetic. In Figure 5, which is obtained with n = 8, we compare the accuracy of
the algorithms. The quality of the approximation is comparable for the polar, the unscaled averaging
iteration and the three-terms iterations, with slightly better results for the polar decomposition
algorithm. Similar results are obtained repeating the computation with different random matrices.

As a second test, we consider the previous six couples together with all 55 different couples
that can be formed with ten 7× 7 matrices chosen from the MATLAB gallery. For each couple
we compute the relative errors obtained with the considered algorithms. Then for any algorithm
we sort these errors by nondecreasing order obtaining a nondecreasing function from {1, . . . , 61}
to R. In Figure 6, we plot these functions yielding a kind of measure of “cumulated accuracy” of
the methods. As one can see, the methods are comparable, but the algorithm based on the polar
decomposition is apparently the best, followed by the Cholesky-Schur algorithm. The figure is split
in two subplots to get a more clear visualization.

8. CONCLUSIONS

We have studied the computational issues related to the matrix geometric mean of two positive
definite matrices A and B, surveying the numerical algorithms for computing A#B. We have
analysed many algorithms, some of which had not yet been considered in the literature for this
specific problem. The algorithms are either based on the Schur decomposition or are iterations or
quadrature formulae converging to the geometric mean. A very nice fact is that all iterations and all
quadrature formulae we were able to find are related to the two important rational approximation of
z−1/2, namely, the Padé approximation and the rational relative minimax approximation.
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Figure 6. Cumulated accuracy obtained using different matrix mean algorithm on 61 examples.

We have observed that the Padé approximation requires a much higher degree than the rational
relative minimax approximation to get the same accuracy on typical problems. On the other hand,
the advantage of the Padé approximation is that there exists a recurrence relation between the
[2k, 2k − 1] Padé approximants to z−1/2 and this recurrence leads to a quadratically convergent
algorithm which outperforms the one based on rational minimax approximation. The quadratically
convergent iterations can be scaled to get very efficient algorithms, as the one based on the polar
decomposition of a suitable matrix.

Our preferred algorithm for computing the matrix geometric mean is the one based on the
scaled polar decomposition, but excellent results are obtained also by the one based on the Schur
decomposition, namely the Cholesky-Schur algorithm, and the one based on the averaging iteration.
Notice that, among the three, the polar decomposition algorithm is the one requiring the smallest
computational effort. Nevertheless, for very large and sparse matrices it may be necessary to use a
quadrature formula as the rational minimax approximation, even if it is not clear how to efficiently
implement an algorithm based on these techniques, in comparison with techniques based on Krylov
subspace methods. A better understanding of the problem of computing (A#B)v with A and B
large and sparse matrices and v a vector is needed and is the topic of a future work.

We wonder if some kind of approximate recurrence could be found for the rational relative
minimax approximation. Moreover, the algorithms based on the Padé approximation benefit
considerably by the scaling technique. One might wonder what is the interpretation of the scaling in
terms of the approximation and if it is possible to get a “scaled rational minimax” approximation in
order to accelerate the convergence.

Another issue is related to the equivalence of methods. For this problem we have found the
equivalence between a Newton method, a Padé approximation, the Cyclic Reduction and a Gaussian
quadrature. We wonder if this intimate connection is true in more general settings. For instance, it
would be nice to see the Cyclic Reduction algorithm as a function approximation algorithm.
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(freely translated from Italian) about the interpretation of the geometric mean as the mid-point of a
geodesic:

It fills of geometric meaning what of geometric had just the name.
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